8.2. Determine the Galois groups of the following polynomials over \mathbb{Q} :
(a) $x^{3}-2$,
(b) $x^{3}+3 x+14, \quad$ (c) $x^{3}-3 x^{2}+1$,
(d) $x^{3}-21 x+7$,
(e) $x^{3}+x^{2}-2 x-1$
(f) $x^{3}+x^{2}-2 x+1$
8.3. Determine the quadratic polynomial $q(x)$ that appears in (16.8.2) explicitly, in terms of α_{1} and the coefficients of f.
8.4. Let $K=\mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^{3}+2 x+1$, and let $g(x)=x^{3}+x+1$. Does $g(x)$ have a root in K ?
8.5. Let α_{i} be the roots of a cubic polynomial $f(x)=x^{3}+p x+q$. Find a formula for a second root α_{2} in terms of the elements α_{1}, δ, and the coefficients of f.

Section 9 Quartic Equations

9.1. Let K be a Galois extension of F whose Galois group is the symmetric group S_{4}. Which integers occur as degrees of elements of K over F ?
9.2. With reference to Example $16.9 .2(a)$, write the element $\alpha+\alpha^{\prime}$ as a nested square root. What other nested square roots does K contain?
9.3. Can $\sqrt{4+\sqrt{7}}$ be written in the form $\sqrt{a}+\sqrt{b}$, with rational numbers a and b ?
9.4. (a) Prove that the polynomial $x^{4}-8 x^{2}+11$ is irreducible over \mathbb{Q} in two ways: using the methods of Chapter 12 and computing with its roots.
(b) Do the same for the polynomial $x^{4}-8 x^{2}+9$.
(c) Determine all intermediate fields when K is the splitting field of $x^{4}-8 x^{2}+11$ over \mathbb{Q}.
9.5. Consider a nested square root $\alpha=\sqrt{r+\sqrt{t}}$ with r and t in a field F. Assume that α has degree 4 over F, let f be the irreducible polynomial of α over F, and let K be a splitting field of f over F.
(a) Compute the irreducible polynomial $f(x)$ for α over F. Prove that $G(K / F)$ is one of the groups D_{4}, C_{4}, or D_{2}.
(b) Explain how to determine the Galois group in terms of the element $r^{2}-t$.
(c) Assume that the Galois group of K / F is the dihedral group D_{4}. Determine generators for all intermediate fields $F \subset L \subset K$.
9.6. Compute the discriminant of the quartic polynomial $x^{4}+1$, and determine its Galois group over \mathbb{Q}.
9.7. Assume that an extension field K / F has the form $K=F(\sqrt{a}, \sqrt{b})$. Determine all nested square roots $\sqrt{r+\sqrt{t}}$ that are in K, with r and t in F.
9.8. Determine whether or not the following nested radicals can be written in terms of unnested square roots, and if so, find an expression.
(a) $\sqrt{2+\sqrt{11}}$,
(b) $\sqrt{10+5 \sqrt{2}}$,
(c) $\sqrt{11+6 \sqrt{2}}$,
(d) $\sqrt{6+\sqrt{11}}$, (e) $\sqrt{11+\sqrt{6}}$.

* 9.9.
(a) Determine the discriminant and the resolvent cubic of a polynomial of the form $f(x)=x^{4}+r x+s$
(b) Determine the Galois groups of $x^{4}+8 x+12$ and $x^{4}+8 x-12$ over \mathbb{Q}.
(c) Can the roots of the polynomial $x^{4}+x-5$ be constructed by ruler and compass?

