- 8.2. Determine the Galois groups of the following polynomials over \mathbb{Q} : (a) $x^3 - 2$, (b) $x^3 + 3x + 14$, (c) $x^3 - 3x^2 + 1$, (d) $x^3 - 21x + 7$, (e) $x^3 + x^2 - 2x - 1$, (f) $x^3 + x^2 - 2x + 1$.
- **8.3.** Determine the quadratic polynomial q(x) that appears in (16.8.2) explicitly, in terms of α_1 and the coefficients of f.
- **8.4.** Let $K = \mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^3 + 2x + 1$, and let $g(x) = x^3 + x + 1$. Does g(x) have a root in K?
- **8.5.** Let α_i be the roots of a cubic polynomial $f(x) = x^3 + px + q$. Find a formula for a second root α_2 in terms of the elements α_1 , δ , and the coefficients of f.

Section 9 Quartic Equations

- 9.1. Let K be a Galois extension of F whose Galois group is the symmetric group S_4 . Which integers occur as degrees of elements of K over F?
- 9.2. With reference to Example 16.9.2(a), write the element $\alpha + \alpha'$ as a nested square root. What other nested square roots does K contain?
- 9.3. Can $\sqrt{4 + \sqrt{7}}$ be written in the form $\sqrt{a} + \sqrt{b}$, with rational numbers a and b?
- 9.4. (a) Prove that the polynomial $x^4 8x^2 + 11$ is irreducible over \mathbb{Q} in two ways: using the methods of Chapter 12 and computing with its roots.
 - (b) Do the same for the polynomial $x^4 8x^2 + 9$.
 - (c) Determine all intermediate fields when K is the splitting field of $x^4 8x^2 + 11$ over \mathbb{Q} .
- 9.5. Consider a nested square root $\alpha = \sqrt{r + \sqrt{t}}$ with r and t in a field F. Assume that α has degree 4 over F, let f be the irreducible polynomial of α over F, and let K be a splitting field of f over F.
 - (a) Compute the irreducible polynomial f(x) for α over F. Prove that G(K/F) is one of the groups D_4 , C_4 , or D_2 .
 - (b) Explain how to determine the Galois group in terms of the element $r^2 t$.
 - (c) Assume that the Galois group of K/F is the dihedral group D_4 . Determine generators for all intermediate fields $F \subset L \subset K$.
- **9.6.** Compute the discriminant of the quartic polynomial $x^4 + 1$, and determine its Galois group over \mathbb{Q} .
- 9.7. Assume that an extension field K/F has the form $K = F(\sqrt{a}, \sqrt{b})$. Determine all nested square roots $\sqrt{r + \sqrt{t}}$ that are in K, with r and t in F.
- **9.8.** Determine whether or not the following nested radicals can be written in terms of unnested square roots, and if so, find an expression.

(a) $\sqrt{2 + \sqrt{11}}$, (b) $\sqrt{10 + 5\sqrt{2}}$, (c) $\sqrt{11 + 6\sqrt{2}}$, (d) $\sqrt{6 + \sqrt{11}}$, (e) $\sqrt{11 + \sqrt{6}}$.

- * 9.9. (a) Determine the discriminant and the resolvent cubic of a polynomial of the form $f(x) = x^4 + rx + s$.
 - (b) Determine the Galois groups of $x^4 + 8x + 12$ and $x^4 + 8x 12$ over \mathbb{Q} .
 - (c) Can the roots of the polynomial $x^4 + x 5$ be constructed by ruler and compass?